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Parametric vs. Non-Parametric

- Parametric
» Based on Functions (e.g Normal Distribution)
> Unimodal — Only one peak
> Unlikely real data confines to function
» Non-Parametric
> Based on Data
= As many peaks as Data has

> Methods for both p(w; | x) and P(w); | x)



Density Estimation

- Probability a vector x will fall in region R.
P=[ p(x)dx ()
R

- Assume n samples, identically distributed. By a
Binomial equation, Probability that k samples

are in Region R is n
B=| |Pa-pt @)

- Expected value for k =nP, so P = k/n



Density Estimation

- For large n, k/n is a good estimate for P
- If p(x) is continuous, and p does not vary in R

P= j p(x)dx'=z p(x)V (4)
%R

« Where V is volume of R k/n
« Combine with P = k/n p(x) = V



If volume V is fixed, and n is increased towards o,
P(x) converges to the average p of that volume.
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It peaks at the true probability, which is 0.7, and
with infinite n, will converge to 0.7.
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Density Estimation

- If n is fixed, and V approaches zero, V will
become so small it has zero samples, or reside
directly on a point, making p(x) = 0 or «

 In Practice, can not allow volume to become too
small, since data is limited.
= If you use a non-zero V, estimation will have some

variance in k/n from actual.

- In theory, with unlimited data, can get around
limitations



Density Est. with Infinite data

 To get the density at x. Assume a sequence of
regions (R, , R, , ... R ) that all contain x. In R,
the estimate uses i samples

 V_ is volume of R, k_ is the number of samples
in R_ . p,(x) is the nth estimate for n.

°pux) =k,/n/V,

= Goal is to get p,(x) to converge to p(x)



Convergence of p,(x) to p(x)

* pn(x) converges to p(x) if the following is true

ImV.=0 - Region R covers negligible

e space

lim kn = oo - p(x) is average of infinite

n—>00 samples (unless p(x) = 0)
ki - The samples of k, are a

Im—=0 negligible amount of the

n—e p

whole set n. n gets bigger
faster then k does.



Satisfying conditions

« Two common methods to satisfy conditions that
both converge

» Volume of Region R based on n
> Parzen Windows
*V,=1/vn

» Number of points in region (k) based on n

= k, nearest neighbors
>k =+vn



Example

« Volume based on n
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Parzen Windows

- Assume Rn is d-dimensional hypercube
- h length of an edge of that cube
> Volume of cube is V, = h ¢

 Need to determine k, (number of samples that
fall within R )



Parzen Windows

» Define a “window” function that tells us if a
sample is in R :

V. =h? (h, :length of the edge of R )

Let @(u) be the following window function :

|<= j=1...d
o) =< e

\O otherwise



Example

« Assumed=2,h, =1
« o((c-x;)/h,) = 11if x; falls within R

I \uj\s% i=1,..d 172

» X1

P(u) =+

|0 otherwise
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Parzen Windows

-

1 . '
¢(u):<1 \uj\sa i=1,....d P

LO otherwise i=1 n

- Number of samples in R, computed as k,,
» Derive new p,(x)
- Earlier, p,,(x) = (k,/n)/V. , now redefined as

1T 1 (x-X
|on(X)—nZVn q{ . ]

=1



Generalize ¢(x)

* pa(x) 1s average of functions of x and samples x;

- Window function ¢(x) is being used for
interpolation

= Each x; contributes to p,(x) according to its distance
from x

- We'd like ¢(x) to be a legitimate density
function

p(v)=20
j o(v)dv =1



Window Width

- Remember that: V. =h’ (h, :length of the edge of R, )

=1 | X—X.
xX)=— ’
p,(x) nz:‘vw( p ]

n

« New definition:

1 X
S5 (x)=—a =
_—r
« h, clearly affects the 1 i=n
amplitude and width of p,(x)= - Z 0,(x—x,)
delta function i=1



Window Width

 Very large h,,
= Small amplitude of delta function
= x; must be far from x before ¢, (x-x,) changes from 6 (0)

= p,(x) is superposition of a broad, slowly changing
function (out of focus)
= Too little resolution

« Very small h,,
= Large amplitude of delta function
= Peak of 6 (x-x,) is large, occurs near x=x,
= p,(x) 1s superposition of sharp pulses (erratic, noisy)
> Too much statistical instability



Window Width

- For any h,, distribution is normalized

h=05




Convergence

« With limited samples, best we can do for h,, is
compromise

» With unlimited samples, we can let V, slowly
approach zero as n increases, and p (x) 2 p(x)

« For any fixed x, p,(x) depends on r.v. samples (x,,
Xipee X,) oo

D, (x) has some mean ;n (x)and variance o (x)



Convergence of mean
p,(x)=[8,(x=v)p(v)ay

- Expected value of estimate is averaged value of
unknown, true density p(x)
> “blurred” or “smoothed” version of p(x) as seen

through the averaging window

e Limits, asn 2 «
= V.20

nVv, > o

o (x-v) =2 delta function centered at x

expected value of estimate - true density

O

O

O



Convergence of variance

« For any n

= expected value of estimate - true density

- ifweletV, > o0

- for some set of n samples estimate is useless (“spiky”)
= need to consider variance

- Should let V,, 2 0 slower than n 2 «

(o)< Dl ()

n
n Vn
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[llustration

s The behavior of the Parzen-window method

o Case where p(x) 2N(0,1)
Let o(u) = (1/W27) exp(-uz/2) and h, = hl/vﬁ (n>1)

(h,: known parameter)

1S 1 [ x-—x,
Pn(x)——zh—(ﬂ( h ]

n ;- n n

Thus:

is an average of normal densities centered at
the samples x..






Qi




Probabilistic Neural Network
« The PNN for this case has

- 1.d comprising the input layer,

°2.n comprising of the pattern
layer,

*3.C

- Each input unit is connected to each pattern
unit.

- Each pattern unit is connected to one and only
one
category unit corresponding the category of the
training sample.

» The connections from the input to pattern units
have modifiable weights w which will be learned

during the training.
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FIGURE 4.9. A probabilistic neural network (PNN) consists of o input units, rn pat-
tern units, and ¢ category units. Each pattern unit forms the inner product of its
weight vector and the normalized pattern vector x to form 2 = w'x, and then it emits
expliz — 13/0%]. Each category unit sums such contributions from the pattern unit con-
nected to it. This ensures that the activity in each of the category units represents the
Parzen-window density estimate using a circularly symmetric Gaussian window of co-
variance oI, where 1 is the d = d identity matrix. From: Richard O. Duda, Peter E. Hart,
and David . Stork, Fattern Classification. Copyright @© 2007 by John Wiley & Sons,
Inc.



PNN training

- The training procedure is simple consisting of
three simple steps.

- 1) Normalize the training feature vectors so that
||x;|]| =1foralli= 1..n.
» 2) Set the weight vector w;, = x; for all 1 = 1...n. w,

consists of weights connecting the input units to
the ith pattern unit.

+ 3) Connect the pattern unit 1 to the category unit
corresponding to the category of x;for all 1 =
1...0.



PNN Classification

1.

2.

Normalize the test pattern x and place it at the input
units

Each pattern unit computes the inner product in order to
yield the net activation

R
net, =w,.x

. . . _ net, —1
and emit a nonlinear function  Jf(net,)=exp o

. Each output unit sums the contributions from all pattern

units connected

P(xlw;)=) ¢, <P(w;|x)
i=1

. Classify by selecting the maximum value of P, (x | @)

G=1,..,c)



Advantages of PNN

» Speed of learning
= Since W, =X,, it requires a single pass thru
training
» Time complexity
> For parallel implementation its O(1) as inner
product can be done in parallel

- New training patterns can be incorporated quite
easily



Summary

- Non parametric estimation can be applied to any
random distribution of data

- Parzen window method provide a better
estimation of pdf

- Estimation depends upon no. of samples and
Parzen window size

- PPN gives an efficient Parzen window method
implementation
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