Non-Parametric Techniques

Jacob Hays Amit Pillay James DeFelice

4.1, 4.2, 4.3

Parametric vs. Non-Parametric

- Parametric
 - Based on Functions (e.g Normal Distribution)
 - Unimodal Only one peak
 - Unlikely real data confines to function
- Non-Parametric
 - Based on Data
 - As many peaks as Data has
 - Methods for both $p(w_j | x)$ and $P(w_j | x)$

Density Estimation

• Probability a vector **x** will fall in region *R*.

$$P = \int_{\Re} p(x') dx' \tag{1}$$

- Assume n samples, identically distributed. By a Binomial equation, Probability that k samples are in Region R is $P_{k} = {n \choose k} P^{k} (1-P)^{n-k}$ (2)
- Expected value for k = nP, so $P \approx k/n$

Density Estimation

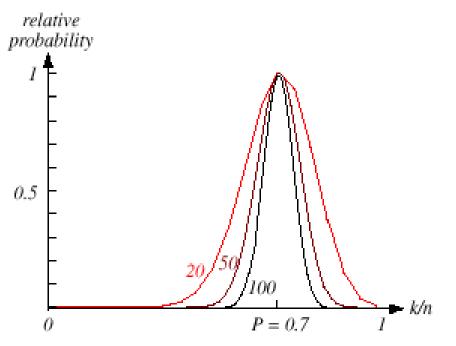
- For large n, k/n is a good estimate for P
- If p(x) is continuous, and p does not vary in R

$$P = \int_{\Re} p(x') dx' \cong p(x) V \tag{4}$$

- Where V is volume of R
- Combine with P = k/n

 $p(x) \cong \frac{k / n}{V}$

If volume V is fixed, and n is increased towards ∞ , P(x) converges to the average p of that volume.



It peaks at the true probability, which is 0.7, and with infinite n, will converge to 0.7.

Density Estimation

- If n is fixed, and V approaches zero, V will become so small it has zero samples, or reside directly on a point, making p(x) ≈ 0 or ∞
- In Practice, can not allow volume to become too small, since data is limited.
 - If you use a non-zero V, estimation will have some variance in k/n from actual.
- In theory, with unlimited data, can get around limitations

Density Est. with Infinite data

- To get the density at x. Assume a sequence of regions (*R*₁, *R*₂, ... *R*_n) that all contain **x**. In *R*_i the estimate uses i samples
- V_n is volume of R_n, k_n is the number of samples in R_n. p_n(x) is the nth estimate for n.
 p_n(x) = k_n / n / V_n
 - Goal is to get $p_n(x)$ to converge to p(x)

Convergence of $p_n(x)$ to p(x)

- p_n(x) converges to p(x) if the following is true
 - $\lim_{n\to\infty}V_n=0$

$$\lim_{n\to\infty}k_n=\infty$$

$$\lim_{n\to\infty}\frac{k_n}{n}=0$$

- Region R covers negligible space
- p(x) is average of infinite samples (unless p(x) = 0)
- The samples of k, are a negligible amount of the whole set n. n gets bigger faster then k does.

Satisfying conditions

- Two common methods to satisfy conditions that both converge
- Volume of Region R based on n
 - Parzen Windows

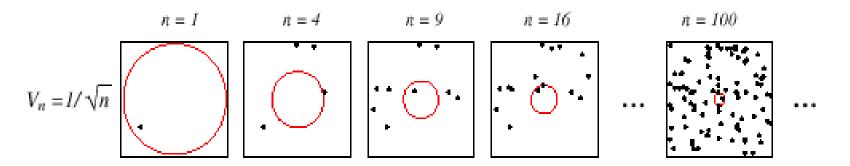
•
$$V_n = 1 / \sqrt{n}$$

- Number of points in region (k) based on n
 - k_n nearest neighbors

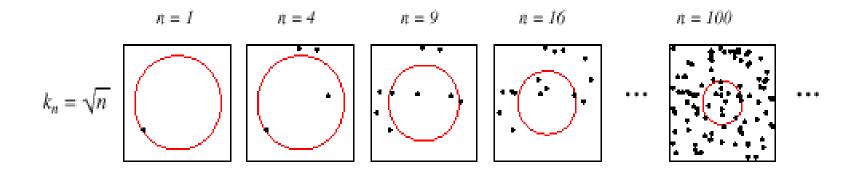
•
$$k_n = \sqrt{n}$$

Example

Volume based on n



• Volume based on k_n



Parzen Windows

- Assume Rn is d-dimensional hypercube
- h_n length of an edge of that cube
- Volume of cube is $V_n = h_n^d$
- Need to determine k_n (number of samples that fall within R_n)

Parzen Windows

- Define a "window" function that tells us if a sample is in R_n :

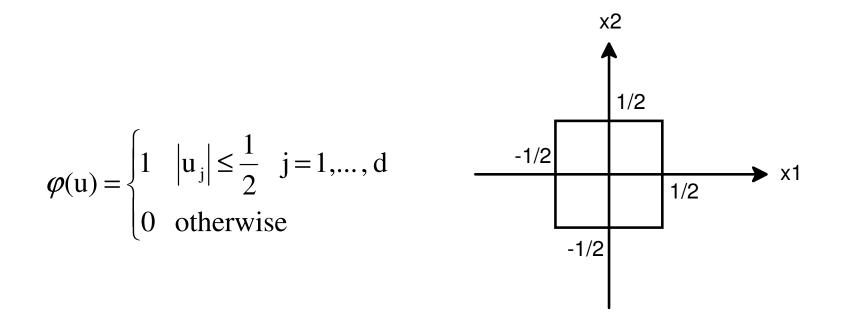
$$V_{n} = h_{n}^{d} (h_{n} : \text{length of the edge of } \Re_{n})$$

Let $\varphi(u)$ be the following window function
$$\varphi(u) = \begin{cases} 1 & |u_{j}| \leq \frac{1}{2} & j = 1, ..., d \\ 0 & \text{otherwise} \end{cases}$$

Example

• Assume
$$d = 2, h_n = 1$$

• $\varphi((x-x_i)/h_n) = 1$ if x_i falls within R_n



Parzen Windows

$$\varphi(\mathbf{u}) = \begin{cases} 1 & |\mathbf{u}_{\mathbf{j}}| \le \frac{1}{2} & \mathbf{j} = 1, \dots, d \\ 0 & \text{otherwise} \end{cases} \qquad k_n = \sum_{i=1}^{i=n} \varphi\left(\frac{x - x_i}{h_n}\right)$$

- Number of samples in R_n computed as k_n
- Derive new $p_n(x)$ • Earlier, $p_n(x) = (k_n/n)/V_n$, now redefined as

$$\mathbf{p}_{n}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{V_{n}} \varphi \left(\frac{\mathbf{x} - \mathbf{x}_{i}}{\mathbf{h}_{n}} \right)$$

Generalize $\varphi(x)$

- $p_n(x)$ is average of functions of x and samples x_i
- Window function \(\varphi(x)\) is being used for interpolation
 - Each x_i contributes to p_n(x) according to its distance from x
- We'd like φ(x) to be a legitimate density function

 $\varphi(v) \ge 0$ $\int \varphi(v) dv = 1$

Window Width

• Remember that:

 $V_n = h_n^d \text{ (h}_n : \text{length of the edge of } \mathfrak{R}_n \text{)}$ $p_n(x) = \frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{V_n} \varphi \left(\frac{x - x_i}{h_n} \right)$

New definition:

$$\delta_n(x) = \frac{1}{V_n} \varphi\left(\frac{x}{h_n}\right)$$

h_n clearly affects the amplitude and width of delta function

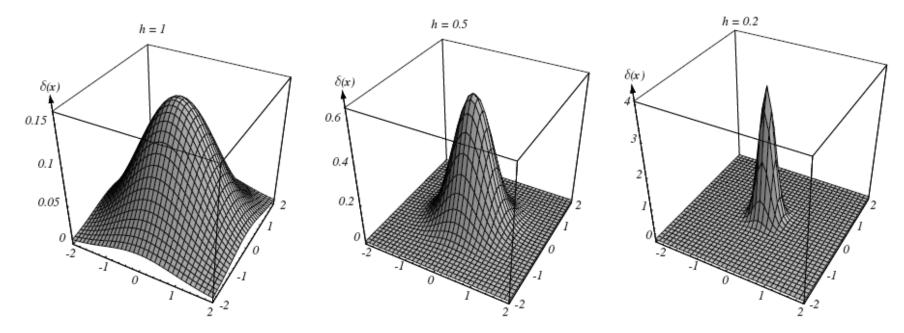
 $p_n(x) = \frac{1}{n} \sum_{i=1}^{i=n} \delta_n(x - x_i)$

Window Width

- Very large h_n
 - Small amplitude of delta function
 - x_i must be far from x before $\delta_n(x-x_i)$ changes from $\delta_n(0)$
 - *p_n(x)* is superposition of a broad, slowly changing function (out of focus)
 - Too little resolution
- Very small h_n
 - Large amplitude of delta function
 - Peak of $\delta_n(x-x_i)$ is large, occurs near $x=x_i$
 - $p_n(x)$ is superposition of sharp pulses (erratic, noisy)
 - Too much statistical instability

Window Width

• For any h_n distribution is normalized



$$\int \delta_n(x-x_i)dx = \int \frac{1}{V_n} \varphi\left(\frac{x-x_i}{h_n}\right)dx = \int \varphi(u)du = 1$$

Convergence

- With limited samples, best we can do for h_n is compromise
- With unlimited samples, we can let V_n slowly approach zero as n increases, and $p_n(x) \rightarrow p(x)$
- For any fixed x, $p_n(x)$ depends on r.v. samples (x_1, x_1, \dots, x_n) ...

 $p_n(x)$ has some mean $\overline{p}_n(x)$ and variance $\sigma_n^2(x)$

Convergence of mean

$$\overline{p}_n(x) = \int \delta_n(x-v)p(v)dv$$

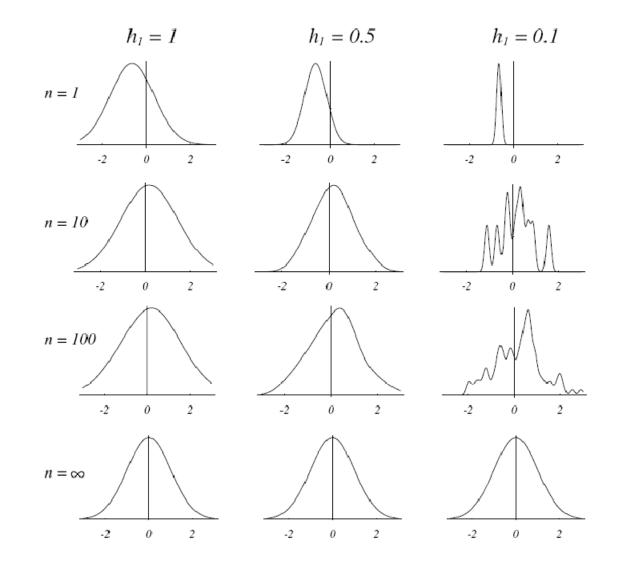
- Expected value of estimate is averaged value of unknown, true density *p*(*x*)
 - "blurred" or "smoothed" version of *p*(*x*) as seen through the averaging window
- Limits, as $n \rightarrow \infty$
 - $V_n \rightarrow 0$
 - $nV_n \rightarrow \infty$
 - $\delta_n(x-v) \rightarrow$ delta function centered at x
 - expected value of estimate \rightarrow true density

Convergence of variance

- For any *n*
 - expected value of estimate \rightarrow true density
 - if we let $V_n \rightarrow 0$
 - for some set of *n* samples estimate is useless ("spiky")
 - need to consider variance
 - Should let $V_n \rightarrow o$ slower than $n \rightarrow \infty$

$$\sigma_n^2(x) \leq \frac{\sup(\varphi(\cdot))\overline{p}_n(x)}{nV_n}$$

Example



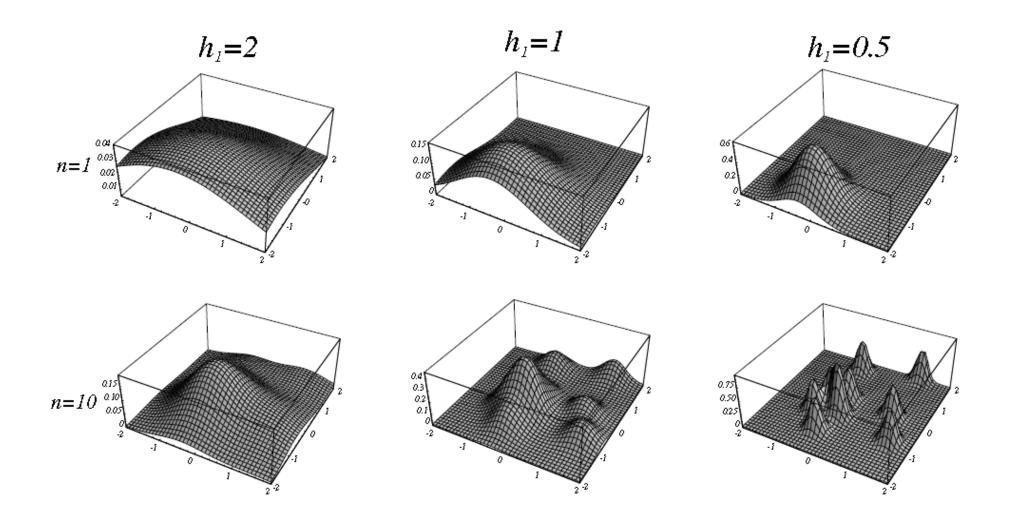
Illustration

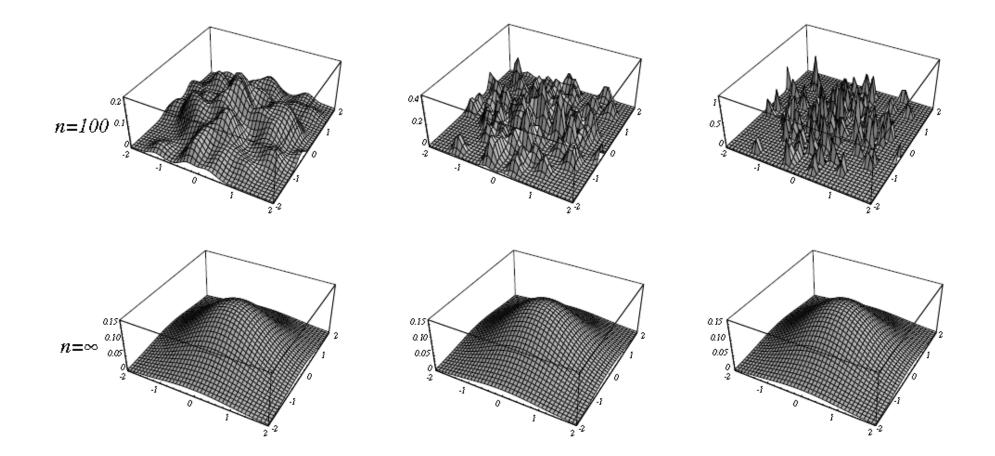
- The behavior of the Parzen-window method
 - Case where $p(x) \rightarrow N(0,1)$ Let $\varphi(u) = (1/\sqrt{2\pi}) \exp(-u^2/2)$ and $h_n = h_1/\sqrt{n}$ (n > 1) (h_1 : known parameter)

Thus:

$$p_n(x) = \frac{1}{n} \sum_{i=1}^{i=n} \frac{1}{h_n} \varphi\left(\frac{x - x_i}{h_n}\right)$$

is an average of normal densities centered at the samples x_i .



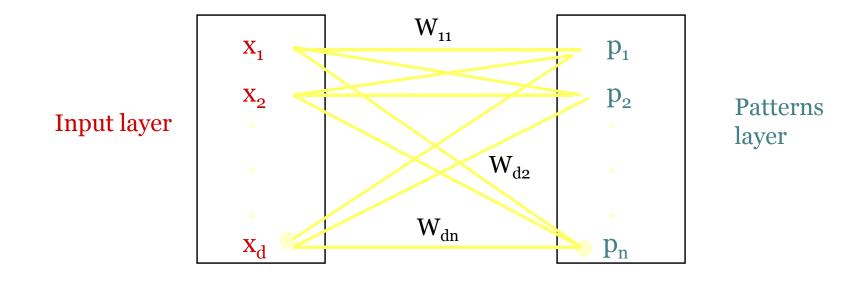


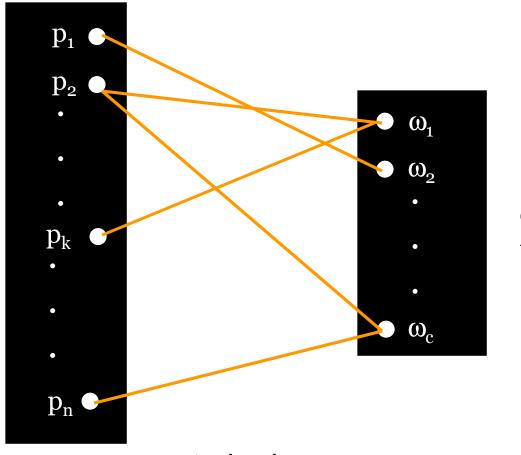
Probabilistic Neural Network

- The PNN for this case has
- 1. *d* input units comprising the input layer,
- 2. *n* pattern units comprising of the pattern layer,
- 3. c category units
- Each input unit is connected to each pattern unit.
- Each pattern unit is connected to one and only one

category unit corresponding the category of the training sample.

• The connections from the input to pattern units have modifiable weights w which will be learned during the training.





Category units

Activations (Emission of nonlinear functions)

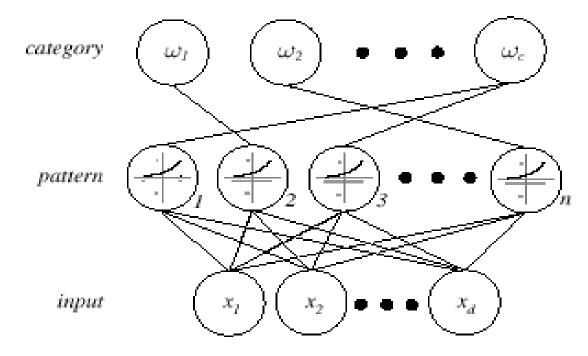


FIGURE 4.9. A probabilistic neural network (PNN) consists of *d* input units, *n* pattern units, and *c* category units. Each pattern unit forms the inner product of its weight vector and the normalized pattern vector **x** to form $z = w^t x$, and then it emits $\exp[(z-1)/\sigma^2]$. Each category unit sums such contributions from the pattern unit connected to it. This ensures that the activity in each of the category units represents the Parzen-window density estimate using a circularly symmetric Gaussian window of covariance $\sigma^2 \mathbf{I}$, where \mathbf{I} is the $d \times d$ identity matrix. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

PNN training

- The training procedure is simple consisting of three simple steps.
- 1) Normalize the training feature vectors so that
 ||x_i|| = 1 for all i = 1...n.
- 2) Set the weight vector $w_i = x_i$ for all i = 1...n. w_i consists of weights connecting the input units to the *ith* pattern unit.
- 3) Connect the pattern unit *i* to the category unit corresponding to the category of x_i for all i = 1...n.

PNN Classification

- 1. Normalize the test pattern x and place it at the input units
- 2. Each pattern unit computes the inner product in order to yield the net activation

$$net_k = w_k^t \cdot x$$

and emit a nonlinear function

$$f(net_k) = exp\left[\frac{net_k - 1}{\sigma^2}\right]$$

3. Each output unit sums the contributions from all pattern units connected $P_n(x | \omega_j) = \sum_{i=1}^n \varphi_i \propto P(\omega_j | x)$

4. Classify by selecting the maximum value of $P_n(x \mid \omega_j)$ (*j* = 1, ..., c)

Advantages of PNN

- Speed of learning
 - Since W_k=X_k, it requires a single pass thru training
- Time complexity
 - For parallel implementation its O(1) as inner product can be done in parallel
- New training patterns can be incorporated quite easily

Summary

- Non parametric estimation can be applied to any random distribution of data
- Parzen window method provide a better estimation of pdf
- Estimation depends upon no. of samples and Parzen window size
- PPN gives an efficient Parzen window method implementation

References

- R.J. Schalkoff. (1992) Pattern Recognition: Statistical, Structural, and Neural Approaches, Wiley.*
- Pattern Classification (2nd Edition) by R.O. Duda, P. E. Hart and D. Stork, Wiley 2001